Latest top results from CDF

Fabrizio Margaroli

University of Bologna & INFN for the CDF collaboration

Top quark

Huge mass, short lifetime: decays before hadronizing

Special role in EWSB?

Probes physics at highest allowable mass scale

cross section decay kinematics resonance production t'→Wq search $T \rightarrow tA_H$ search A_{FB} W-W helicity single top, V_{tb} spin correlation top mass branching ratios width/lifetime rare decays $t\rightarrow H^+\widetilde{b}, t\chi$

Top physics is mature for a wide range of measurements which we just began to explore

Top pair decays

Lepton+Jets

golden channel: high statistics *AND* good S/B ratio. Most of the measurements are made here

All hadronic

challenging channel: highest statistics *BUT* huge backgrounds

Dileptons

cleanest sample even before b-tag BUT lowest statistics & neutrinos

MET+jets

large acceptance to taus, orthogonal to others

CDF detector

✓ Tracking: silicon tracker - drift chamber- muon chambers

- ✓ b-quark identification w silicon detector (SVX) top event b-tag eff: ~55%
- Calorimeters:
 central, wall, plug
 overall coverage: |\epsilon|<3.6

Luminosity

Common features

Trigger requirements			
L+jets	inclusive high Et lepton	l	
Dilepton	(e/μ)		
All-jets	high jet multiplicity &		
ME _T +jets	SumE _T >175GeV		

Main Backgrounds		
L+jets	W+jets (b's, c's, others), QCD (jets faking leptons)	
Dilepton	$Z/\gamma^* \rightarrow l^+l^-$, diboson	
All-jets	QCD multijet	
ME _T +jets	QCD/W+jets	

Event selection			
L+jets	$P_{T}(e/\mu) > 20 GeV$ large ME_{T}		
	E _T (jets)> 15GeV		
Dilepton	As above with 2 high P _T leptons		
All-jets	≥6 jets + NN selection + b-tag		
	OR cut-based selection + b-tag		
ME _T +jets	As above but large ME _T significance		

Cross section

Tests QCD in high Q² regime

Each channel is sensitive in a different way to new physics

Study of sample composition (useful for other property measurements)

Most measurements are counting experiments:

$$\sigma_{tar{t}} = rac{N_{obs} - N_{bkg}}{A imes \int \mathcal{L} dt}$$

No discrepancies found

Some x-sec measurements

Counting experiment

Dilepton

Background modeling: MC + data-driven no b-tag result with 750pb⁻¹

σ_{tt} = 8.3±1.5(stat.)±1.0(syst.)±0.5(lum.) pb

Likelihood fit

L+jets

NN w/o b-tagging requirement: larger acceptance ~ 300 tt evts but larger background -> fit shapes result with 760pb⁻¹

$$\sigma_{tt}$$
=6.0 ± 0.6 (stat.) ± 0.9 (syst.) pb

Top mass

Fundamental parameter in the SM M_{top} enter in radiative corrections:

Together with M_w it constrains M_{Higgs}

RunII design goal: 2-3 GeV O(10 fb⁻¹)

RunII 1fb results: ~2GeV with just 1 fb⁻¹

• Different challenges in different channels: (low statistics, high background, combinatorics)

Lots of measurements!

Top mass measurement at CDF's:

large number of measurements using all 4 signatures

different techniques:

Template method Matrix Element

Not all of them are shown!!!

Latest CDF combination:

 m_{top} =170.9 ± 1.4 ± 1.9 GeV/c²

Lepton+jets

Matrix element technique

$$\mathcal{L}(M_{top}, JES, C_s; \vec{x}) \propto \prod_{i=1}^{N} [C_s P_{t\bar{t}}(\vec{x}; M_{top}, JES) + (1 - C_s) P_{W+jets}(\vec{x}; JES)]$$

Jet Energy Scale (JES) measured through a contraint of the untagged dijets mass to known W mass

 $M_{top} = 170.9 \pm 2.2 \text{ (stat+JES)} \pm 1.4 \text{ (syst) GeV/c}^2$

Most precise single measurement in the world!

All hadronic channel

Template method

NN kin selection + b-tag $S/B\sim1/2$ $N_S\sim250$ evts

 $M_{top} = 174.0 \pm 2.2(stat.) \pm 4.5 (JES) \pm 1.7(syst.) GeV/c^2$

Mixed technique: ME to extract a Template

Kin+dynam cuts + b-tag

 $S/B \sim 1/1$

 $N_s \sim 30 \text{ evts}$

Use dijets to constrain the JES

Precision measurements in a difficult channel!!

 $M_{top} = 171.1 \pm 2.8 \text{ (stat.)} \pm 2.4 \text{ (JES)} \pm 2.1 \text{(syst.)} \text{ GeV/c}^2$

W helicity in top decays

Tests V-A interaction

Measure the W's helicity fraction using $\cos \theta^*$

SM predicts

$$F_0 = 0.7$$
 $F_1 = 0.3$

$$F_{=}0.3$$

$$\mathbf{F}_{\perp}=\mathbf{0}$$

Use l+jets evts, reconstruct event kinematics

$$F_0 = 0.59 \pm 0.12 \text{ (stat.)} \pm 0.07 \text{ (syst.)}$$

 $F_+ = -0.03 \pm 0.06 \text{ (stat.)} \pm 0.04 \text{ (syst.)}$
 $F_+ < 0.1 @ 95 \text{ C.L.}$

Large uncertainties but consistent with SM

Pair production mechanism: gg vs. qq

Test of pQCD (~15% gg→ttbar, ~85% qqbar →ttbar) and is sensitive to new physics.

Multiplicity of low pt tracks is correlated to gluon content.

Data driven technique

Calibrate <N_{trk}> vs. <N_g> using W+jets and dijet data (and MC)

Fit data to **gluon rich** and **no-gluon**<N_{trk}> templates

 $\sigma(gg \rightarrow tt)/\sigma(pp \rightarrow tt) = 0.01 \pm 0.16(stat.) \pm 0.07(syst.)$

New physics in top sector: resonance?

Top as a probe for new physics at very high mass scale!

Look for a heavy neutral boson with the same couplings as the \mathbf{Z}^0

$$p\bar{p} \to X^0 \to t\bar{t}$$

$$450 < M_X < 900 \text{ GeV/c}^2$$

 signal shape is totally dominated by resolution and combinatoric effects

Fully reconstruct the event: look for invariant mass in the t-tbar system through binned likelihood fit

Set limits to $\sigma \times BR(X^0)$ ->ttbar

Summary of CDF analysis

SM Ob	servable	CDF measurements	SM expectation
Mass	(GeV/c²)	170.9 ± 2.4	178+12_9
$\sigma_{\rm tt}$	(pb)	7.3 ± 0.9	6.7 ± 0.9
$\overline{\mathbf{F_0}}$		0.59 ± 0.14	0.70
F ₊		<0.1 @ 95% C.L.	0
σ(gg→tt)/σ((pp→tt)	$0.01 \pm 0.16 \pm 0.07$	0.15
c x top lifeti	me (µm)	$c\tau_{top} < 52.5$	10-10
σ(single top) (pb)	not there yet	2.9 ± 0.4

Non SM process	CDF limits
resonant production	(BRx σ) < 1 pb @ 95 C.L. for M _X > 600GeV/c ²
t' search	t' mass > 258 GeV at 95% CL

And many more....!

BACK UP SLIDES

CDF and Tevatron mass average

Weights of the various decay channels in the CDF and Tevatron combination:

Best measurements from l+jets; second best from all-hadronic channel, third from dilepton. Trend is well-estabilished @ CDF

Single top

- Single top production probes V_{tb} and is sensitive new physics
 - background to Higgs searches

Difficult signature: after evts selection on average S/B~1/30

4 different measurements:

Neural Network

s+t channel <2.6 pb @ 95% C.L.

$$t$$
-channel = 0.2 +1.1 -0.2 pb

s-channel = 0.7 +1.5 -0.7 pb

s+t channel <2.7 pb @ 95% C.L. best fit

$$t$$
-channel = 0.2 pb

s-channel = 0.1 pb

s+t channel = 2.7 +1.5 -1.3 pb

obs p-value(1-CL_b)=
$$1.0\%$$
 (2.3 sigma)